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The image-processing system SPIDER has been designed to operate on a minicomputer in a multiuser environment. 
SPIDER, which can be run either interactive or batch mode, makes a wide range of operations (including contrast 
enhancement, Fourier filtration, correlation averaging, and three-dimensional reconstruction) available for analysis of electron 
micrographs. The command language supports a hierarchical calling structure, branching commands, and DO-loops similar to 
those of FORTRAN. 

1. Introduction 

1.1. Electron image processing 

Image processing has become increasingly important 
as a tool for interpretation and enhancement of electron 
micrographs. This is evident from recent reviews, which 
cover a wide range of apphcations [1-5]. The increased 
availability of minicomputers has now put the many 
image-processing schemes proposed over the years 
within the reach of electron microscopy groups. 

Following Smith's scheme [6], the applications can 
be roughly grouped into three categories: restoration, 
image enhancement, and three-dimensional reconstruc- 
tion. 

Restoration is the attempt to eliminate distortions 
introduced by the objective lens of the electron micro- 
scope. Certain approximations in bright field electron 
microscopy of weakly scattering objects lead to a linear 
system description of image formation [7,8], which al- 
lows the object's potential distribution to be computed 
from the experimental data [9- 11]. 

Image enhancement is a summary term denoting 
point-for-point operations, or operations involving local 
neighbors of image points, which aid in visual interpre- 
tation of images. Quantitative methods of image averag- 
ing aimed at enhancing the signal-to-noise ratio may 
also be included in this category. The importance of 
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these methods in specimen-preserving high-resolution 
electron microscopy has been widely recognized since 
Unwin and Henderson's study of the purple membrane 
protein [12]. More recently, averaging methods for single 
particles have been developed [13-15], extending low- 
dose investigation to a larger class of biological speci- 
mens. Multivariate statistical techniques promise to be a 
powerful tool in structural analysis of single molecules 
and crystals [16,17]. 

Three-dimensional reconstruction is reconstruction, by 
various procedures, of an object's mass distribution in 
three dimensions from a series of micrographs showing 
the object in different views [4,18,19]. In the special ease 
of an object having high symmetry, a single micrograph 
may be sufficient [18]. 

To represent an image recorded on a photographic 
film or plate in digital form, one must scan the film or 
plate on a computer-controlled digital microdensitome- 
ter, where optical density values are read on a raster, 
converted into digital form, and written onto a storage 
medium (tape, disk). In the reverse operation, often 
combined with the scanning function in the same instru- 
ment, digitally recorded images are displayed as a fine 
raster of points on a photographic film. 

The increased flexibility of digital processing can 
best be realized when the system is designed in a 
modular way (fig. 1). Mathematical operations on images 
or sets of images are broken down into the simplest 
steps involving an entire image. These steps are stan- 
dardized to permit their use in more than one context. 
In each step an input image (existing as a file on a mass 
storage medium) is processed, and an output file is 
created with the same format; the output file can then 
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be used as input for a subsequent operation. List and 
display operatioris make it possible to check and debug 
each processing step separately. Mote involved schemes 
can be built from these elementary operations by simply 

Fig. 1. Scheme of the data flow in a modular image processing 
system. Operation A creates image I' from input image I. At 
the end of operation A, I' resides along with I on a mass 
storage medium and can be listed and displayed before being 
subjected to step B. 

stringing them together in a virtually infinite number of 
ways. The first comprehensive image-processing system 
with this design philosophy, VICAR [20], was developed 
at the Jet Propulsion Laboratory in Pasadena in the 
1960s. 

If a fast graytone display device is available, the 
decision on which processing step to choose next in a 
series of operations can be based on the result of the 
immediately preceding step, making the system interac- 
tive. 

IMAGIC [30] are designed for minicomputers with 64 
Kb storage or less. 

Some correspondences exist between SPIDER and 
SEMPER [15,26] in the command language structure 
and in the system design. However, SEMPER is dis- 
tinguished by freer rules of format and register assign- 
ments, while SPIDER has greater flexibility in the dy- 
namic features of the language. 

One difference between these two systems is that 
SPIDER supports a full dialogue with the user by 
printing out solicitation messages on the terminal, 
whereas SEMPER only returns results or error mes- 
sages. Our experience is that solicitation messages in 
operations (as well as user-created solicitation messages 
in procedures; see section 3.6) are an invaluable aid in 
processing with a modular software system. With so 
many operations available, it is very difficult to mem- 
orize all of the various input sequences required. In 
contrast, the solicitation messages help even inexperi- 
enced users in interactive SPIDER sessions to compre- 
hend and use the processing system within a short time. 
Interactive sessions also provide training in extended 
use of the language in procedure and batch command 
files. 

The most comprehensive program package for three- 
dimensional reconstruction and various two-dimensional 
filtrations, which was developed at the Medical Re- 
search Council in Cambridge [31], is not a modular 
system in the sense described here. Rather it is a collec- 
tion of programs that lacks the cohesiveness and versa- 
tility of other systems listed in table 1. 

Development of a multipurpose software system is a 
very laborious task, often a byproduct of research activ- 
ity. The successful design and implementation of such a 
system may therefore precede its publication by several 
years. For instance, EM existed in its basic form in 
1970, 10 years before it was first described in the 
literature [29]. 

1.3. SPIDER hardware configuration and design consider- 
ations 

1.2. Existing modular software systems 

The need for a modular design in electron image- 
processing systems has been recognized by a number of 
groups [6,21-30] and has been answered in various 
ways, depending on the particular computer installa- 
tions of the originating laboratories. Of the software 
systems listed in table 1, IMPROC [27], MDPP [6], and 
EM [29] are written for large machines, while SEMPER 
[25], SPIDER [21], MIRAGE [22], PIC [28], and 

SPIDER (System for Processing of Image Data in 
Electron microscopy and Related fields) was developed 
at the New York State Department of Health as a 
general-user facility for a wide range of applications 
associated with high-voltage and conventional-voltage 
microscopes. Among these applications are enhance- 
ment of low-contrast electron micrographs [32], com- 
puter filtration [33], single-molecule averaging [13-15], 
three-dimensional reconstruction [34], and evaluation of 
electron diffraction information. 
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The hardware consists of a Digital Equipment Cor- 
poration (DEC) PDP- I I / 45  computer, two 1600-bpi 
tape units, two 176-Mb disk units, a VERSATEC 
printer/plotter,  a line printer, a Princeton Electronics 
Product (PEP) 801 graytone storage display system, and 
a Perkin Elmer PDS 1010A flatbed microdensitometer. 
The microdensitometer is run by a DEC P D P - I I / 0 5  
computer operating independently" of the P D P - l l / 4 5  
and equipped with a tape unit and a film-writing op- 
tion. 

Some of the design requirements underlying the 
SPIDER system were very similar to those spelled out 
by Smith [6]: that the system be easily accessible to 
users having limited experience with computers; that all 
operations be available in a single job; that options for 
display, listing, and permanent storage of images be 
available; that installat ion-dependent features be 
avoided, where possible; and that the system be capable 
of processing any number of images with arbitrary sizes 
(within limits) and formats. Additional restrictions were 
imposed by our reliance on a small computer in a 
multiuser environment. 

Averaging of single molecules by correlation meth- 
ods [13-15] requires the processing of a large number of 
images that are realizations of the same molecule projec- 
tion. Other applications, such as three-dimensional 
reconstruction from projections [34,35], also involve a 
series of files that must be subjected to essentially 
identical operations. These applications demand an effi- 
cient mechanism for defining repeated operations or 
sets of operations over a series of images. DO-loops that 
can be nested up to three deep were created in SPIDER 
for this purpose. 

Finally, there were requirements for a hierarchical 
command structure and for a general mechanism to 
transfer values from one operation to another and from 
one run of the program system to another. 

All of these requirements have been realized in a way 
that may be of general interest in the design of modular 
software systems. 

2, Sy~emdesign 

2.1. General 

The SPIDER system consists of a master task 
DRIVER and a set of slave tasks, which are run under 
the DEC R S X l l M  operating system in a multiuser 
environment (fig. 2). The slave tasks are started by 
DRIVER and return control to DRIVER when finished. 
Each slave task performs a subset of the 120 operations 

l J! 

Fig. 2. Schematic representation of SPIDER procesing system 
[21]. DRIVER and the slave tasks communicate with each 
other by three means: (1) START/RESUME directives, (2) 
SEND/RECEIVE directives to pass the name of the current 
working area and project extension to the slave task, and (3) a 
parameter containing all information pertinent to the session 
and the current processing stage. The control sequence for the 
processing session is either contained in the sequential com- 
mand (batch mode) or entered directly from the terminal 
(interactive mode). In the latter case, a log file stores all user 
input for later reference. (Reproduced with kind permission of 
the Microscopical Society of Canada.) 

now available. A session is defined as a set of operations 
between the start of DRIVER and an end ("EN") 
command. Each session is distinguished from other 
parallel sessions by a unique project code. The user starts 
a session by executing DRIVER and specifying the 
project code and the data library he wishes to access. 
The image-processing commands are entered either di- 
rectly on a terminal (interactive operation) or via a 
sequential command file previously prepared by using 
the text editor (batch operation). Procedure files, a spe- 
cial class of command files which allow run-time re- 
placements, can be invoked interchangeably with the 
basic commands in either interactive or batch operation. 

Upon encountering an operation command (e.g. 
" R T "  for rotate), DRIVER activates the appropriate 
slave task and suspends itself. Once activated, the slave 
task performs the operation, soliciting any information 
required (names of input files, values of processing 
parameters, etc.) from the user. The slave task then asks 
for the next operation command and continues process- 
hag. When it encounters a command not contained 
among its operations, the slave task reactivates 
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DRIVER, passes on to DRIVER the current input line, 
and exits. DRIVER then continues as above. 

The main advantages of this approach are minimiza- 
tion of compile and link time for program changes, 
minimization of core use, and an open-ended system 
design. DRIVER communicates with the slave tasks by 
means of a SEND/RECEIVE message and a sequential 
parameter file. The SEND/RECEIVE message contains 
the name of the user's working area and the name of the 
parameter file. This file, as well as other temporary 
system-generated files to be mentioned later, has a 
name unique to the session, so that two or more SPIDER 
sessions can be run simultaneously. Any information 
needed by the slave task (the file extension specifying 
the data library, the current command-file name, file 
pointers, etc.) is written to the parameter file by 
DRIVER and read by the slave task upon activation. 
Before exiting, the slave task updates the parameter file. 
Communication between 'DRIVER and the slave tasks, 
as well as the activation, suspension, and exiting of the 
various tasks, is transparent to the user. 

DRIVER is the only task that retains all information 
pertinent to the session. It handles all global switches 
and system-related operations (DO-loops, procedures, 
etc.), while the slave tasks handle all operations in- 
volving data processing (e.g. Fourier transformation, 
masking, and rotation of images). 

2.2. Coding 

With a few expectations, all main programs and 
subroutines are written in FORTRAN IV. Subroutines 
for system-related functions (such as read/write accesses 
to the disk, communication with DRIVER, reading of 
parameter values, opening of files, and updating of 
statistical information) are standardized, facilitating the 
implementation of new operations into existing slave 
tasks or the creation of a new slave task. 

2.3. Registers 

Up to 100 storage spaces are available for storage 
and transfer of important values during the SPIDER 
session. The corresponding array of floating point num- 
bers is passed from DRIVER to the slave tasks and vice 
versa as part of the parameter file. The storage spaces 
are called registers and are invoked in the command 
language by the symbols X0... X99, which may take the 
place of any integer or floating point number expected 
in the command stream. Registers are thus an important 
tool for exchange of information between operations 
within 'a session. 

2.4. Global switches 

Global switches are implemented in the system to 
invoke different modes of operation for the entire ses- 
sion: 
(a) Print output can be spooled to the line printer on 
completion of each operation or on termination of the 
session. 
(b) A trace switch allows the user to follow the progress 
of a batch run from messages printed on the terminal. 
(c) Two modes of error response in the batch operation 
are available. In one mode an error immediately 
terminates the session. In the other mode the processing 
is allowed to go on, skipping to the next intelligible 
command. 
(d) Read-only access to data in other working areas is 
available on request. 
(e) Two versions of each slave task may be activated, 
depending on the state of a switch. This feature enables 
testing of modified versions of a task without disrupting 
the use of the existing system. It also allows efficient use 
of the available memory in test runs, if one set of the 
tasks is built with a minimum of buffer space sufficient 
for small images. 

2.5. Image format 

Images are stored one record per line as airect-access 
files on disk. Each density reading is stored as a 4-byte 
word. Both Perkin Elmer 1010A tapes and Optronics 
tapes can be read by the system. SPIDER accesses the 
PDP-11 file directory through special subroutines. 

The image file consists of the image data and a 
certain number of records needed to accommodate ad- 
ditional space for the Fourier transform, a 128-point 
histogram, and the SPIDER image-processing label. The 
historgram and part of the image label contain statis- 
tical information on the image that, once acquired, is 
available to any subsequent operation. The status of the 
statistical information is recorded by flags, which are 
interrogated in each operation to decide whether the 
information is already stored or whether it needg to be 
computed. 

Thirteen file formats are used and distinguished in 
the SPIDER system (table 2). The different types of 
random-access files are distinguished by label flags, 
which are checked in each access for consistency with 
the operation. The format for storage of the Fourier 
data is consistent with the optimized fast Fourier trans- 
formation program by Fraser [36]. 

In the SPIDER system all file names have the stan- 
dard form ( A B C ) ( LMN ) .  (EXT),  where (ABC) are 



348 J. Frank et aL / SPIDER--Modular software system for electron image processing 

Table 2 
File formats used in the SPIDER system 

Random access, unformatted Sequential, formatted 

Real 2-D 
Real 2-D polar 
Real 3-D 
Fourier 2-D 
Fourier 2-D polar 
Fourier 3-D 
NonJmage 
parameter a) 

Document 
Procedure 
Batch 
Log a) 
Results 41 

~) Created in each sessions. 

In the interactive mode the user input is copied into 
a sequential log file. It can be called up later to recreate 
the same results in a batch run. Changes of dimensions 
and parameters can easily be made by editing the log 
file after the session that created it. 

All user input in interactive or batch operation is 
handled by special subroutines that combine the func- 
tions of printing the solicitation message, reading, echo- 
ing, and log-keeping. The input of parameter values is 
either explicit in free format or by reference to the 
contents of registers filled by previous computations. 

3. Command language 

three letters specifying a file series and (LMN) is a 
three-digit number between 001 and 999, specifying the 
number of the file in the series. (EXT) is the same file 
extension for the entire session and is used to restrici 
the access of the image procesing to a data library. 
Within the session only the first six letters of the file 
need to be specified, e.g. PIC008 or RES855. 

To facilitate the processing of selected files from a 
file series, a variable file name specification has been 
created. With PIC00I, for example, the sequence "00I" 
is replaced by a three-digit number according to the 
value assigned to the index I in a command-level DO- 
loop, With RECXI0 the three last characters denote a 
SPIDER register, causing a file name to be constructed 
from the pre-fix "REC" and a three-digit number stored 
in the register XI0. 

At the beginning of the session and upon completing 
each operation, SPIDER solicits the next command by 
printing the message "OPERATION:". All possible user 
responses form a language. The syntactic rules of the 
language are set by rules of format (e.g., operation 
commands must be entered left-justified) and by the 
order of input parameters expected for a given opera- 
tion. In the interactive mode the solicitation messages 
serve to enforce the rules of the language. In the batch 
mode the user must set up an error-free command text 
with the help of the user's manual and protocols of 
previous interactive sessions kept in a log file. (For 
handling of errors, see section 2.4.) 

The various types of commands are listed in table 3. 

3.1. Basic commands 

2.6. System-user communication 

The system-user communication sequence c~m be 
summarized as: solicitation-user response-verification 
- log entry. 

The solicitation line specifies the input that is next 
expected in the command sequence. In the interactive 
mode this line has an important mnemonic function. In 
the batch mode the solicitation line is printed out along 
with the input line to make the processing sequence 
intelligible. 

The user response comes from the terminal or, in the 
batch mode, from the batch command file. The user 
input is then echoed in a verifying message to ensure the 
information accepted by the system corresponds to the 
input intended by the user. In addition, the opening of 
any file is accompanied by an explicit verification state- 
ment, which includes the complete file name, title, data 
and time of creation, data type and dimensions, and file 
disposition. 

There are over I00 basic commands relating to a 
variety of operations (see appendix 1). These commands 
can be roughly grouped into seven categories (examples 
are given in parentheses): 

Table 3 
Command types in SPIDER 

Type of command Example 

"Basic command 
Arithmetic interrogation 
Arithmetic assignment 
Register interrogation 
Batch command 
Procedure command 
Branching commands 

DO-loops 
labels 
Conditional jumps 
Termination and return 

RT 
SIN(2- I./X10)+X20 
XI5=(2**X3). 150.6 
XI0 
1343 
PRI 

DO LBi I= I, 10 
LB3 
IF(X50.GT.4)GOTO LB3 
EN, RE 
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file management (copy, file-information, delete, 
rename); 

image movement and editing (mask, shift, rotate, inter- 
polate, insert); 

display (graytone display, contour, profile, list); 
contrast enhancement (density stretching, histogram 

equalization, local averting); 
Fourier operations (fast Fourier transform, filtration, 

cross- and autocorrelation); 
three-dimensional reconstruction (project, back-project, 

stack, unstack); 
interface with multivariate statistical analysis programs. 

RUN DRIVER 
(Spider V3 (06/10/80) on 09-Dec-80 a t  19:07:20) 
• e n t e r  p r o j e c t / d a t a  eode:LHH/DAT 
l tm/da t  
. o p e r a t i o n :  H0 

mo 
.ou tpu t  f i l e :  I'DDOOL/TEST PICTOI~ 
modO01, dat  
• e n t e r  dims (nsam~ nrtra): 45 t 50 

45 50 
db : [ 200, 050]rood001. d a c / t e s t  picture 
{r) 45 50 c rea ted  on 09-Dec-80 a t  19:12:20 m 
• ( t ) e s t / ( s ) / n e / ( c )  £ r c / ( w ) e d / ( r ) a n / ( g ) a u s s  : W 

v 
. o p e r a t l o n :  PD 

• l n p u t l  f i l e :  ~DDOOi 
mod0Ol.dat 

db : [200, 050] modOOl, da t / t  eat p i c t u re  
( r )  45 50 created on 09~Dec-80 at  19:12:20 o 
.OUtpUt f i l e :  PA~O01/TEST PICTUP~ PADDED 

psdOOl.dat 
• e n t e r  dims (nsa% nrov)  : 64, 64 

64 64 
db:[20OsOSO]padOOl.dat/teat p i c tu r e  padded 
( r )  64 64 c rea ted  on 09-Bee-80 a t  19:15:02 n 
. ave rage? (y /n ) ,  (c) c i r c u l a r  op t ion :  Y 

Y 
. t op  l e f t  coos: lOs7 

tO 7 
. o p e r a t i o n :  PT 

i t  
. i npu t  ~ i l e :  PADO01 

pad0Ol, da t  
db: [200, 050 |padOOl .da t / tes t  p i c tu r e  padded 
( r )  64 64 c rea ted  on 09-Dec*80 a t  19:15:02 o 
• opera t ion:  PW 

lea 
• input  f i l e :  pADOOI 

pad001, da t  
db:[20OpOSO|po~OOl.dat/teet p i c t u r e  padded 
( r )  64 64 c rea ted  on 09-Dec-80 a t  19:24:51 n 
. o p e r a t i o n :  

Fig. 3. Example of computer/user dialogue in interactive ses- 
sion. The SPIDER system is run with a project code LMN and 
data code DAT. The computer messages are in lowercase 
letters; the user input is in capital letters. In this example a 
model image MOD001 with dimensions 45, 50 is created 
("MO") which contains a density wedge. If'is padded ("PD") 
into a 64×64 image PAD001, with the image average as 
background. The padded image is subsequently Fourier- 
transformed ("FT"); this operation overwrites the image file 
with the Fourier transform. Finally the operation "PW" com- 
putes the modulus of the Fourier transform and stores it into 
POW001. Each open access to a file results in a two-line 
statement showing the file title, disposition, format and crea- 
tion data. The first access to the file PAD001 after Fourier 
transformation shows it to have Fourier format, denoted "(F)". 

A letter after the creation date indicates whether the file 
existed, before (o) or is being created (n) or modified (m). 

Each operation, when invoked by one of the basic 
commands, will solicit all necessary information. Nor- 
really this comprises the names of input and output 
files, option specification, and input parameter values 
pertinent to the operation. In the following examples 
lower-case letters denote messages printed by the com- 
puter, and capitals denote user responses: 
• operation: SH 
• input file: PIC001 
• output file: OUT003 
• shift components (x,y): 5,6 
• operation: 
(Here we have left out the verifying messages.) An 
example of a complete record of user/system interac- 
tion, such as would be recorded on a hardcopy terminal, 
is shown in fig• 3. 

Basic commands may have options or outputs argu- 
ments. For instance, 'TRO' invokes the Optronics for- 
mat option of the tape-read command. PK Xl0,X! l,Xl2 
is equivalent to the instruction "peak search, and put 
the x , y  coordinates and the value of the largest peak 
into the registers Xl0, X1 l, and Xl2 respectively". 

3.2. Arithmetic interrogation (pocket calculator) 

Any arithmetic expression involving the five basic 
operations ( + ,  - ,  / ,  *, **) and numbers or SPIDER 
registers can be evaluated. In addition, the functions 
SIN, COS, EXP, LOG, SQRT, and PAD can be used. 
The PAD function returns, for a given argument, the 
next larger number that can be represented by a power 
of 2. For instance, PAD(5) = 8, PAD(45) = 64. With 
this function images can be automatically padded for 
operations involving radix-2 Fourier transformations 
(e.g. ref. [37])• 

3.3. Arithmetic assignment 

Arithmetic expressions appearing on the right-hand 
side of an assignment statement are evaluated as above, 
and the result is put into the register appearing on the 
left-hand side. The assignment statement is thus exactly 
equivalent to a FORTRAN arithmetic assignment. 

Register interrogation 

If a register is specified in the command position, its 
contents are printed on the terminal or line printer. 

3.5. Batch command 

A batch command has the form B(NM),  where 
(NM)  is a two-digit number• Such a command switches 
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the SPIDER input command stream from the terminal 
to a sequential file named B(NM) . (PRJ ) ,  where 
(PRJ) is the project code, thus terminating the interac- 
tive mode of operation. The batch file can contain any 
sequence of commands and parameter values as they 
would be entered by the user in the interactive session. 
The log file, which records each input line in an interac- 
tive session, can be used as a batch" command file to 
reproduce the processing sequence. 

3.6. Procedure command 

The full flexibility of the processing system has been 
achieved by creating a procedure calling structure. A 
procedure may be regarded as a batch command se- 
quence in which certain input hnes have been left 
unspecified until execution time. Any file name or input 
line where one or more numerical constants are ex- 
pected can be replaced by a substitution line with the 
general format ?(character string)?, where (character 
string) is the desired execution-time solicitation mes- 
sage. Such a line causes DRIVER to fetch the next- 
scheduled input from the next-higher level of the calling 
hierarchy, i.e., from the terminal or from a calling batch 
or procedure command stream. 

In the interactive mode the character string has the 
function of a solicitation message. The sequence of 
user-system interaction in the execution of a procedure 
is therefore identical to the sequence foUowed in the 
execution of a basic command. In a listing of the 
procedure all substitution strings stand out from the 
rest of the code, making the purpose of the procedure 
immediately evident. For example: 
RT 
PIC001 
PIC002 
50. 
SH 
PIC002 
SHI002 

- 3,8 
This is a command string to rotate the image stored in 
PIC001 by 50 ° and store the result in a file named 
PIC002. Subsequently PIC002 is to be shifted by a 
vector with the components -3,8, and the result is to be 
stored in SHI002. 

If such a command string is to be executed many 
times with different source and destination file names 
and different values of the parameters (rotation angle, 
shift vector components), it may be worthwhile to make 
the command string into a procedure. If the inter- 
mediate image file resulting from the rotation is of no 

interest, the procedure would be written in the following 
form: 

RTI.GLS 

RT 
?INPUT FILE? 
SCR001 
?ROTATION ANGLE? 
SH 
SCR001 
?OUTPUT FILE? 
?SHIFT VECTOR (X,Y)? 
RE 

where GLS is the project code assigned to this session 
and stored in a file named RTl.GLS. "RTI"  is a freely 
chosen name of the procedure with the general naming 
convention ( A B ) ( N ) ,  where (AB) is any two letters 
of the alphabet and (N)  is any digit, including 0. Any 
image name or parameter value in the command string 
that was chosen to be a variable of the procedure is 
replaced by a solicitation line in the procedure se- 
quence. A return command "RE" terminates the proce- 
dure, passing control to the next-higher level of the 
command input stream. 

When called interactively, the command RT! will 
now generate the following dialogue: 
.operation: RTl 
?input file? PIC001 
?rotation angle? 50. 
?output file? SHI002 
?shift vector (x,y)? -3,8 
which, for the arguments chosen, leads to the same 
processing sequence as the initial batch command se- 
quence. 

In the batch mode, similarly, the command RTI can 
always be used to effect a rotation and subsequent 
shifting of an image. The rules for the sequence of the 
input lines and the types of value input follow directly 
from the sequence of the solicitation lines and types of 
.parameters solicited in the procedure. (Note that all text 
after a semicolon is interpreted as a command.) For 
example: 
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B01. GLS 

;B01 A BATCH COMMAND SEQUENCE TO 
; DEMONSTRATE 
; A CALL TO RTI 
MO ; CREATE MODEL PICTURE: DENSITY 
; WEDGE 
PIC001 ; NAME OF OUTPUT FILE 
32, 32 ; DIMENSION OF OUTPUT FILE 
W ; MAKE IT A WEDGE 
RTI ; CALL PROCEDURE RT1 
PIC001 ; INPUT FILE TO PROCEDURE 
50. ; ROTATION ANGLE 
SHI001 ; OUTPUT FILE FROM PROCEDURE 
- 3,8 ; SHIFT VECTOR COMPONENTS 
PR ; USE OVERPRINTING FOR DISPLAY 
; OF RESULT 
SHI002 ; INPUT TO OVERPRINTING 
N ; NO CONTOURING 
EN P ; END SESSION AND SPOOL RESULT 
; TO LINE PRINTER 

3. 7. Branching commands 

The branching commands in SPIDER essentially 
duplicate the functions Of DO-loop statements, labels, 
and logical IF  statements in FORTRAN. In contrast to 
the pseudo DO-loop in other systems, where the repeti- 
tion is achieved by creating multiple copies of the 
original command stream [22], the DO-loop is here 
realized by execution-time substitutions in the reading 
routines. Up to threefold nesting of DO-loops is al- 
lowed; but this restriction, similar to the restriction of 
the number of procedure nesting levels, is arbitrary. Its 
sole purpose is to limit the storage area used by .internal 
table of DRIVER to a practical size. 

Branching commands are meaningful only if they 
appear in a batch or procedure command sequence. 

3.8. Communication between operations within a session 

Within a session important parameter values can be 
transferred from one operation to another by use of the 
100 registers, denoted X0...X99. Any register can take 
the place of any floating-point number or integer in 
arithmetic expressions or input argument positions. In 
addition, it can appear in an output argument position, 
such as OR XI0, where the register accepts a value 
computed in the operation. File names can also be 
generalized by the use of registers; for example, the 
input PICXI0 is replaced PIC004 if X10 has been 
previously assigned the value 4. 

The first 10 registers are reserved for system- and 
image-related quantities and are updated during each 
operation. Image dimensions and values of statistical 
parameters can thus be accessed and used in a dynamic 
design of the batch or procedure command sequence. 

Each register, due to a special feature of DRIVER, is 
local to the batch or procedure in which it appears. The 
use of a particular register, say X20, in a given proce- 
dure does not interfere with the value stored in the 
register X20 used in a calling batch or procedure. For 
example: 

B01.GLS PRI.GLS 

X 1 0 = 5  
PRI 

XI0 

EN 

XIO = I 

RE 

Here the register XI0 is local to procedure PRI, and 
will therefore have no effect on the value of Xi0  in the 
calling batch sequence B01: the value of X10 printed 
out in response to the interrogation is 5. 

Transfer of values from one level of the calling 
hierarchy to another is achieved through a special com- 
mand "RR" (read register). Execution of the sequence 

B01.GLS PRI.GLS 

X 1 0 = 5  
PRI 
X10 

EN 

RR X20 
?ENTER HIGHEST REFLECTION ORDER? 

RE 

will transfer the value of register X10 into local register 
X20 in PRI in response to the user-created solicitation 
message " E N T E R  H I G H E S T  R E F L E C T I O N  
ORDER". 

Transfer of register values between one procedure 
and another can be achieved by using the command 
"SR", which has options for saving (S) and unsaving 
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(U) the values active in all 100 registers. For example: 

B02.GLS PRl.GLS PR2.GLS 

PR1 

X I 0 = 5  

PR2 

EN 

XI0 = 200 
X15=81.5 

SR S 

RE 

SR U 

RE 

Here the commands SR S and SR U cause the values of 
XI0 and Xl5 to be transferred from PR1 to PR2 along 
with the contents of all other registers. Because of the 
local character of registers the transferred value of X10 
is not changed by the ass~snment X10 = 5 in the calling 
sequence. Since the "SR" unsave call in PR2 affects 
only the local register contents, the value assigned to 
Xl0 in the calling sequence remains the same after the 
PR2 call. 

Another means of communication, both within a 
session and between sessions, is the document file, 
which will be described in the following section. 

3.9. Communication between sessions 

All register contents vanish when a session is 
terminated. A general vehicle for communication of 
register contents between sessions has been created in 
the form of a document file. This is a sequential, for- 
matted file organi7ed into keyed document records. 
These records may or may not coincide with the physi- 
cal 80-byte records used, depending on the number of 
registers transferred. The general saving or updating 
command is 

SD (key),  X<NI ) ,  X(N2) ,  X(N3) .. . . .  X(NJ)  

<document file name) 

where <key) is an integer number or a register con- 
taining an integer (with the meaning of a particle num- 
ber, a DO-loop index, etc.) and X(N1) . . .X(NJ)  is an 
arbitrary sequence of J registers. 

An unsave command of the form 

UD <key), X(MI ) ,  X(M2) ,  X(M3) ..... X(MI)  

(document file name) 

will pick out the last entry under the number <key) and 
transfer the contents of the document record into the 
arbitrary sequence of I registers X ( M I ) ,  X<M2), 
X(M3) ..... X(MI)  with I ~ J .  The transfer is de- 
termined, not by the register numbers themselves, but 
the sequence of the register numbers in the SD and UD 
commands. For example: 
X I 0 =  l 
Xl l  --5.2 
SD 5,XI0,XI l 
DCM001 

UD 5,X50,X20 
DCM001 
This sequence will transfer the values 1 and 5.2 from 
Xl0 and Xl I into X50 and X20 respectively. 

A typical application of the document file is the 
documentation of rotations, shift vector components 
and correlation coefficients calculated in the alignment 
of a series of particle. By the use of the document file 
any of these quantities may be applied in a subsequent 
batch run to a different set of files, or they may be used 
to recreate the set of aligned files from the raw data. 

Finally a "list document" option allows the user to 
tabulate the entire document file using any desired 
headings. For example, the command 

LD 'particle number', 'Angle', 'X shift', 'Y shift', 'corr' 

DCM001 

will cause the first four entries in each document record 
to be listed with the key numbers in ascending order 
and with the column headings 'Angle', 'X shift', etc., 
applied. 

4. Example 

An example of extended use of the language is the 
procedure RA0 (fig. 4), which performs N-fold rota- 
tional averaging of an uncentered particle contained in 
an image. The particle is assumed to be centrosymmet- 
ric. In this example a batch file B01 is prepared to 
subject 10 particles, contained in the image series 
PAR001-PAR010, to six fold rotational averaging. The 
batch commands instruct SPIDER to apply RA0 with 
N = 6 to 10 particles. RA0 brings the particle into the 
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image center, generates N - - 1  symmetry-related posi- 
tions by rotating the particle and adds these to the 
centered input image. 

The method of centering a centrosymmetric motif 
makes use of cross-correlation [13,37]. First the shift 
vector between the motif as it appears in the 180 °- 
rotated image is determined. This shift vector has the 
same direction, and is twice as long, as the vector 
needed to bring the particle into the image center. The 
procedure CTI which is called at the beginning of RA0 
is based on this principle. The image is rotated by 180 ° 
and cross-correlated with its 180°-rotated version. Both 
images are padded into a larger array as preparation for 
cross-correlation to prevent artifacts in the cross- 
correlation function due to circular overlap [39]. The 
shift vector found in the search of the correlation peak 
("PK") is then halved and applied to the original image. 
The output file of CTi ,  TMP001 thus contains an image 
with the particle in centered position. Through the use 

a 
; DO1 D~ONSTRATE USAGE OF P ~ C E D ~  RAO 
DO LBI 1"1~  1 0  ; DO-LOOp OVER PARTICLE SERIES 
RAO ; CALL G~ERAL PROCgD%~E ~DR ROTATIONAL AVEPAGING 
PAROOI ; INFUT FILE FOR ROTATIONAL AVERAGING 
( 6 . )  ; MAKE IT SIX-FOLD 
RA~q)01 ; OUTPUT OF ROTATIONAL AVERACI~C 
LH1 ; I~D OF DO-LOOp 
EN ; ~ D  RE'ION RUN 

b 
; PAO PROCEDDRE TO PER~ORM A I ~ T I C  CEHTERI~C AND N '~LD ROTATIONAL 
; AUERAGIND OF AN IMAGE CONTAINING A C E h T R O ' S ~ T E I C  N~TIF. 
FI ; FILE INFORNATION TO INTRODUCE PILE TO BE AVERAGED 
?II4~GE TO BE ROTATIORALLY AVERAGED? ; I~PUT TO PILE INFO ~ INPNT TO RAO 
XII~XL STORE NDP~RE, OF SAI~LES OF I ~ J T  I14&GE IN REGISTER E l l  
XI2•X2 STORE HIJ'r~ER OF RUNS OF INPUT D'~GE IN REGISTER XI2 
CT1 PROCEDURE CALL: CENTER MOTIF USING CRUSS~DORRELATION 
PI INPUT TO CTI - F~LENAR~ ENTERED IN RESFON~E TO IST QUERY 
T~O01 TEI~ORARE FILE TO STORE CENTERED OUTI~f IMAGE 
RR Y~O READ SVFg~TRY FACTOR Ih'FO REGISTER ~ 0  
?SY)~TRY FACTOR? ; VALUE OF SYtS~RY FACTOR - INPUT TO RA0 
FI ; FILE IN'FUP~TION t~ED TO READ IN ~ OF DOTFOT FILE 
?ROTATIOHALLY AVERAGED IMAGE? ; OUTPUT FILE OF BA0 
IF(X20. EQ. l .  )GOTO LS2 ; ONE-FOLD AVERAGING ~-q/4S TAUE NO ACTION 
TE(EIO. LE.O.)GOTO LB3 ; GENERATE ERROR ~SSAGE IF FACTOR .LE.O 

~L FROM HEHE ON HORI~AL SY~TRY FACTORS GREATER THAN I 
CREATE ZERO BACKGROUND FILE WITH THE DESIRED OUTleT FII,E~t%I~ 

P3 OUTPUT OF EL • FILENAI~ ENTERED IN RESPONSE TO 3RO QUERY 
Xlt~X12 DI)~HSIOHS OF FILE TO BE CREATED - DI2~NSIONS OF INPUT IMAGE 
• THAT WERE PREVIOUSLY STOKED 
DO LB1 I -2 ,  ~ O  ; GO-LOOP TO GENERATE AND ADD E20-1 ROTATED, SYI~TRY- 

~o-(z.1 
RT 
TUPO01 
ROTDOI 
X30 

SffFO01 

DE 
ROTOOI 
DE 
~ 0 !  
RE 

DP 
~ G O I  
P3 
RE 

ON 
RE 

RELATED IMAGES 
*360./~?.0 ; CALCULATE ROTATION ANGLE 
ROTATE. CENTERED FILE 
INPUT TO ROT.ATE • OUTFU'T OF PROCEDURE CALL CTI .~S0VE 
OUTPUT OF ROTATE GOES INTO TEI'~ORARY FILE 
P~EATION /d~Gl~ ~ CALCULATED BEFORE 
ADD OUTPUT OF ROTATE TO PREVIOUS AVER#~E 
IMAGE TO BE ADDED TO ~ RESPONSE TO THIRD QUERY 
D4&GE TO HE ADDED " OUTPUT OF ROTATE 
NO F~RTHER II4AGES TO BE ADDED TEI~ STEP 
END DO -LOOP 
DELETE T~ORARY FILES 
t4A/~ 0P FELE TO FE DELETED 

DUENNA. R E T ~  
HERE FOR TRIVIAL CASE OF ONE-FOLD S ~ T R Y  

IN CASE OF ONE-FOLD AVERAGINO~ SII~LY GOlf INTO OUTPUT OF RED 
OUTPUT OF CTI - INPUT TO COPY 
OVD~T OF COPY = F I L E I ~  ENTERED IN RESPONRE TO 3~D Q ~ Y  
P.ETt~M FROM ONE-FOLD 
JUUP HERE FOR ILI,RC.qL SYIg~TRIZATIOH PACTOEN 

ERROR *~e SYI4~I'RIZATIOH FACTOR ZERO OR NEGATIVE 
R ~ E N  PROH ERROR SECTION 

C 
; DTL nOD PROCEDURE TO CENTER A CEHTRO-SYtO~TRIC MOTIF 
RT ; ROTATE INPUT II~DE BY ~80 DEGREES TO CREATE SYI~TREoRELATED INAOE 
?I~AGE TO BE CENTEP~D? ; IHPUT TO ROTATION 
INVDO1 ; OUTPUT OF ROTATION 
(180. )  ; ROTATION /d4OLE 
)~I-PAD(2*XI) ; COMPUTE DI~NSIOUS OF PADDED ARRAY. P~KE THEM I~ICE THE 
~ 2 - P R D ( 2 * ~ )  ; DD~USIOUS OF INAGE~ AND ROUND UP TO NEXT INTEGRE THAT IS A 
• POWER OF TWO 
PD FAD INPUT D{AGE AS PREPARATION OF CROSS'CORRELATION 
p /  INPUT TO PADDING = P I L E ~  ENTEKED IN RESPONSE TO lET QUERY 
pADOOI OUTPUT OF PADDING GOES INTO TEMPORARY FILE 
X2~ ~ 2  DI~REFOH OF PADDED ARRAY AS CALCULATED SETORE 
Y YES m USE AVERAGE OF n4AOE I~R PADDING ~ADEGROUND 
(1, I )  PAD INTO UPPER LEFT CORNER (NO~E THAT FADDINC COORDINATES ARE 
; IRRELEVANT FOR CROSS-CORRELATION RESULT~ PROVIDED ~4E SA~  ONES 
• ARE USED FOR BOTH IP~GES) P 
PD PAD I80"DEGREES ROTATED lieGE 
INV001 INPUT TO PADING • OUTPUT OF ROTATE 
pADOO2 OUTPUT OF PADDING GOES INTO TI~ORARY FILE 
X21s X22 DD~NSIONS OF PADDED ARRAY AS ABOVE 
Y YES, USE AVERAGE OF IHAGE FOR PADDINC BACKCROUND 
(1 s 1) USE SAI'~ PADDING COOROLqATES AS ABOVE 
CC CRO6S-CORRELATE PADDED INPUT WITH PADDED~ 180 DICE. ROTATED II4AGE 
FADOO[ USE PADDED ORICD{AL AS FIRST INPUT TO CO; TO BE OVE~ITTEH BY 
• CROSS -CORRELATIOH F~CTFOH 
pADO02 ; USE PADDED~ 180-DECR ROTATED I~OE AS SECOND INPUT TO CD; TO BE 
• OV~RITTEN BY ITS FOURIER TRA~TORH e 

N ; NO FILTRATION OF CONJUGATE ~ I E R  CROSS-PRODUCT 
PK XLI~XI2 ; SEARCH THE CROSS-CORRELATION FUNCTION FOR P R ~  STORE 
2" ! POSITIONS IN REGISTERS XI[,XI2 FOR LATER USE 
rADOOI . INPUT TO PFAK-SEARCH ~ CEOSS-COP.RELETION FI~ICTIOH FROH PREVIOUS STEP 
(3) ; LIST OF 3 HIGHEST PEAKS ON PRINTOUT 
XII--XII/2 ; CALCULATE NEGATIVE HALF OF PEAK SHIFT VECTOR, Tills IS THE 
X12='X12/2 ; VECTOR BY ~14ICH THE D4AGE ;'~.S TO BE SHIFTED TO BE CENTERED 
SH ; SHIFT ORIGINAL I ~ G E  
PI  ; INPUT TO SHIFT - F I L ~  ENTERED IN RESPONSE TO lET QUERY 
?CENTERED PILE? ; OUTleT OF SHIFT - OUTPUT OF THIS PROCEDURE 
Xllj X12 ; USE VECTOR COMPONENTS DOUBTED ABOVE TO CENTER M G E .  
DE ; DEI,,EI~ ALL TEMPORARy FILES 
PADOOI 
DE 
PADOO2 
DE 
INVl001 
RE ; RETU$~H 

Fig. 4. Example of a three level calling structure in command 
language. Ten images are stored in PAR001 ... . .  PAR010, each 
containing a particle projection in uncentered position. To be 
computed is the sixfold, rotationally symmetrized average of 
the centered particle. The user need only set up B01 (a), a batch 
file utilizing a DO-loop over the particle series, and a call to 
RA0 (b; general rotational symmetrization), specifying 6 as the 
symmetry count. The job of centering a centrosymmetric motif 
is delegated to the procedure CT1 (c) which is called by RA0. 
Both RA0 and CTI are part of a standard procedure library 
and make use of existing basic operations such as cross- 
correlation, rotation, and shifting. Since no compilation and 
linking are involved, the development of the procedures takes 
no more than a few minutes. 

of system registers containing image dimensions, proce- 
dures can be written in such a way that they are 
applicable to images of any size. 

Another feature of the command language, the use of 
symbolic references to previously entered input Lines, is 
evident from RA0. In this procedure Pl and P3 are used 
to invoke previously entered file names. 

Another example, the procedures used to align par- 
ticles that have random orientations and positions, was 
reported earlier [21 ]. 
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5. Documentation 

The system documentation consists essentially of 
four parts: a user introduction explaining the main con- 
cepts; a command manual,  which outlines the 
system/user dialogue for each operation; a cross- 
reference table, which lists the commands and the rele- 
vant sections in the user introduction for a large number 
of keywords; and an alphabetical list of subroutines 
making up the package, along with brief explanations of 
their functions. All four parts of the documentation are 
updated each time an operation is changed or added to 
the existing package. 

In addition there is documentation of the SPIDER 
procedures. User-built procedures are normally very 
specific to a project and have no practical value beyond 
the lifetime of the project. Only a few procedures that 
are generally useful are adopted into the system's proce- 
dure library. The system/user dialogue for such proce- 
dures is explained in the same way as the dialogue for 
basic commands in the command manual. Documenta- 
tion of the remaining procedures is the user's responsi- 
bility. 

tion (existence of file, number of records and record 
length) can be interrogated in FORTRAN routines. 

These functions are normally supported by most 
minicomputer configurations, and for these the imple- 
mentation of the SPIDER system should offer no par- 
ticular problem. The most drastic changes concern the 
system-specific file conventions. 

7. Conclusions 

Our software system resulted from an attempt to 
realize a large variety of image-processing operations on 
a small computer and to construct a control language 
that allows branching, iterating and procedure-nesting 
on several levels. 

The price for the flexibility of the system is overhead 
time for searching of commands and swapping of slave 
tasks. However, this price may not be too high, consid- 
ering the time and expenditures involved in the creation 
of rapidly ageing, project-oriented programs. 

A separate paper will be devoted to applications of 
the SPIDER system in the main areas of electron image 
analysis. 

6. Transportability 

SPIDER was designed initially for the DEC RSXI ID 
operating system and then converted to run under 
RSXI IM version 3.2. The system layout into several 
tasks will be advantageous for any minicomputer system 
with multi-user environment. The main features affect- 
ing the transportability are that (l)  initiation of slave 
tasks by a resident master task is supported; (2) 
SEND/RECEIVE communication allows the master 
task to initialize important parameters of the slave task; 
(3) file names are created and dynamically changed at 
various points in the program system according to the 
DEC file-ll  naming convention; and (4) file informa- 
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Appendix 1, Table of SPIDER commands 

(Commands created for interfacing multivariate statistical analysis programs are not included in this list.) 

Operation Short description Function 

AC Autocorrelation 
AD Add 
AF Angular Fourier 
AI Angular interpolation 
AR Arithmetic operation 
BC Box convolution 

Auto-correlate an image using Fourier method 
Add two or more images point-for-point 
Fourier transform in azimuthal direction 
Convert cartesian into polar representation 
Perform point-for-point arithmetic operation on image 
Form local average and mix with original image 
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Appendix 1, Table of SP IDER commands (continued) 

Operation Short description Function 

BL Blank 
BP Back projection 
CC Cross-correlation 
CE Contrast enhancement 
CF Construct Fourier 

CH Correlation histogram 

CN Convolution 
CO Contour 
CP Copy 
CR Cross-reference 
CS Central slice 

CT Concatenate 
DC Determine common line 

DE Delete 
DF Density foldover 
DO DO-loop 
DU Dust 

ED Edge enhancement 
EF Extract Fourier 
EN End 
EX Exit 
FC File contour 

FF Fourier filter 

FI File information 
FL Fourier list 
FP Fourier interpolation 
FS Find statistics 
FT Fourier transform 
GF General filter 
GP Generate projections 

GS Gray scale 
HI Histogram 
IF Logical IF 

IN Insert 
IP Interpolate 

LB # Label 
LD List document 
LI List file 
MA Mask 
MD Mode 
ME Menu 
MO Model 
MR Mirror 

Create image with constant background 
Back-project in two or three dimensions 
Cross-correlate two images using Fourier method 
Stretch density scale/histogram-equalize 
Construct a Fourier transform from set of 
amplitudes and phases 
Plot histogram of correlation values or other 
values stored in document file 
Convolute two images with each other using Fourier method 
Contour plot 
Copy 
Extract Fourier from existing projection-Fourier stack 
Obtain 2-D section of 3-D volume in arbitrary 
direction 
Concatenate two or more images 
Determine tilt axis and tilt angle from 
marker coordinates for back-projection 
Delete file 
Obtain display with bit-clipping 
Start of DO-loop 
Reset image points that are off the mean by 
3 standard deviations or more 
Enhance edges in image by using recursive filtering 
Extract 2-D Fourier from 3-D Fourier 
End SPIDER session 
End SPIDER session and save LOG file 
Contour image by bit-clipping and superpose 
on image 
Apply low- or high-pass filter function to 
Fourier transform 
Show statistical attributes of image 
Print selected portions of Fourier transform 
Interpolate by padding Fourier transform 
Compute statistical attributes of image 
Compute Fourier transform or inverse 
Mask Fourier transform on reciprocal lattice 
Extract I-D projection lines from image 
series for back projection 
Display image using Versatec halftone software 
Compute and display histogram of image 
Conditional jump depending on arithmetic 
comparisons 
Insert an imago into a larger one 
Interpolate into arbitrary rectangular 
format using bilinear interpolation 
Destination label for conditional jumps and DO-loops 
List contents of document file ordered by key 
List any file by rows 
Apply circular mask to image 
Select global processing mode 
Display menu of commands 
Create model image 
Create mirror-related version of image 
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Appendix 1, Table of S P I D E R  commands (continued) 

Operation Short description Function 

MU Multiply 
OR Orientation 

PA Patch 

PD Pad 

PF Profile 
PH Phase Fourier stack 
PJ projection 
PK Peak search 
PO Poem 
PR Print 
PS Pick slice 
PW Power spectrum 
RA Ramp 

RC Real space convolution 
RD reduce transform 

RE Return 

RF Rotational filter 
RN Rename 
RO Rotational average 
RR Read register 
RT Rotate 
SC Scale Fourier stack 
SD Save document 
SF Stack Fourier 
SH Shift 
SI Stack interpolation 
SK Stack 2-D slices 

SL Slice 
SQ Square 
SR Save registers 
SS Serial section 

ST Set label 
SU Subtract 
SZ Squeeze 
TA Tilt angle 
TF Tilted transfer function 
TI Tape information 
TM Time 
TP Three-D plot 
TR Tape read 
TT Title 
TV TV display 
TW Tape write 
UD Unsave document 
WI Window 

Multiply two images point-for-point 
Find orientation between two images or auto- 
correlation functions 
Add small image onto large image at arbi- 
trary position 
Pad image with average or background constant 
to make it larger 
Plot profile of a selected image row 
Apply phase shift to projection-Fourier stack 
Compute I-D or 2-D projection of 2-D or 3-D volume 
Search positions of N highest peaks 
(Operation to celebrate the 100th command) 
Display image using overprinting 
Pick slice from 3-D volume 
Compute modulus of Fourier transform 
Determine least-squares density wedge of 
image and subtract 
Convolute image with arbitrary rectangular array 
Create reduced Fourier transform from amplitudes 
and phases of reflections 
Return from procedure to next-higher 
level of command language 
Filter angular Fourier 
Rename file 
Compute rotationally averaged profile 
Read number into register 
Rotate image 
Scale projection-Fourier stack 
Store register contents in document file 
Edit projection-Fourier stack (add, delete, insert) 
Shift image 
Interpolate projection-Fourier stack into 3-D Fourier 
Create 3-D volume by stacking images 
representing slices 
Slice a 3-D volume in arbitrary direction 
Square image point-for-point 
Save/unsave registers temporarily 
Align images of serial section according 
to marker positions 
Edit statistical and protection label of file 
Subtract two images point-for-point 
Shear image to conform with arbitrary unit vector angle 
Refine tilt angle using positions of reflections 
Generate a transform function vs. defocus display 
List contents of tape from microdensimeter 
Print wall clock time 
Make perspective plot of an image 
Read image from tape to disk 
Change title of image 
Display image on halftone display system 
Write image onto tape in microdensitometer format 
Read registers from document file 
Window out portion of image 
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Appendix I, Table of S P I D E R  commands (continued) 

357 

Operation Short description Function 

WT TV Window Window image interactively/index reciprocal lattice interactively 
WU Wurzel (square root) Compute point-for-point square root of image 
WV Window averaging Window out and sum portions from image according 

to vectors stored in document file 

References 

[ I ] P.W. Hawkes, Computer Graph. Image Processing 8 (1978) 
406. 

[2] D.L. Misell, Image Analysis, Enhancement and Interpreta- 
tion (North-Holland, Amsterdam, 1978). 

[3] W.O. Saxton, Computer Techniques For Image Process- 
ing, in: Advances in Electronics and Electron Physics, 
Suppl. 10, Ed. L. Marion (Academic Press, New York, 
1978). 

[4] R.A. Crowther and A. Klug, Ann. R.ev. Biochem. 44 
(1975) 161. 

[5] J. Frank, J. Microsc. 117 (1979) 25. 
[6] P.R. Smith, Ultramicroscopy 3 (1978) 153. 
[7] P.W. Hawkes, in: Computer Processing of Electron Micro- 

scope Images, Ed. P.W. Hawkes (Springer, Berlin, 1980). 
18] J. Frank, in: Advanced Techniques in Biological Electron 

Microscopy, Ed. J.K. Koehler (Springer, Berlin, 1973). 
[9] J. Frank, Biophys. J. 12 (1972) 484. 

[101 O. KObler, M. Hahn and J. Seredynski, Optik 51 (1978) 
171,235. 

[I 1] R..E. Burge, T.C. Dainty and R..F. Scott, Ultramicroscopy 
2 (1977) 169. 

[12] P.N.T. Unwin and R. Henderson, J. Mol. biol. 94 (1975) 
425. 

[13] J. Frank, W. Goldfarb, D. Eisenberg and T.S. Baker, 
Ultramicroscopy 3 (1978) 283. 

[14] H.P. Zingsheim, D.-Ch. Neugebauer, F.J. Barrantes and J. 
Frank, Proc. Natl. Acad. Sci. USA 77 (1980) 952. 

[151 J. Frank and W. Goldfarb, in: Electron Microscopy in 
Molecular Dimensions; State of the Art and Strategies for 
the Future, Ed. W. Baumeister and W. Vogell (Springer, 
Berlin, 1980) p. 261. 

[16] J. Frank and M. van Heel, in: Pattern R.ecognition in 
Practice, Eds. E.S. Gelsema and L.N. Kanal (North- 
Holland, Amsterdam, 1980) p. 235. 

[17] M. van Heel and J. Frank, Ultramicroscopy 6 (1981) 187. 
[ 18] D.. DeRosier and A. Klug, Nature 217 (1968) 130. 
[19] J.E. Mellema, in: Computer Processing of Electron Micro- 

scope Images, Ed. P.W. Hawkes (Springer, Berlin, 1980) 
p. 89. 

[20] F.C. Billingsley, Advances in Optical and Electron Micros- 

copy, Vol. 4, Eds. Barer and V.E. Coslett (Academic Press, 
London, 1971) p. 127. 

[21] J. Frank and B. Shimkin, in: Proc. 9th Intern. Congr. on 
Electron Microscopy, Ed. J.M. Sturgess (Microscopical 
Soc. Canada, Toronto, Ontario, 1978) Vol. I, p. 210. 

[22] R.H. Wade, A. Brisson and L. Tranqui, J. Microsc. Spec- 
trosc. Electron. 5 (1980)699. 

[23] S. Kawata, Y. Ichioka and T. Suzuki, J. Phys. E (Sci. 
Instr.) 11 (1978) 1191. 

[24] S. Kawata, Y. Ichioka and T. Suzuki, Optik 52 (1978) 235. 
[25] W.O. Saxton, T.J. Pitt and M. Horner, Ultramicroscopy 4 

(1979) 343. 
[26] M. Horner, in: Developments in Electron Microscopy and 

Analysis, Ed. J.A. Venables (Academic Press, London, 
1976) p. 209. 

[27] W.O. Saxton, Computer Graph. Image Processing 3 (1974) 
266. 

[28] B.L. Trus and A.C. Steven, Ultramicroscopy 6 (1981) 383. 
[29] R.. Hegerl, in: Electron Microscopy 1980, Eds. P. Brederoo 

and W. de Priester (7th European Congr. on Electron 
Microscopy Foundation, Leiden, 1980) Vol. II, p. 700. 

[30] M. van Heel and W. Keegstra, Ultramicroscopy, to be 
published. 

[31] D.J. DeRosier and P.B. Moore, J. Mol. Biol. 52 (1970) 
355. 

[32] W. Goldfarb and J. Frank, in: Proc. 9th Intern. Congr. on 
Electron Microscopy, Ed. J.M. Sturgess (Microscopical 
Soc. Canada, Toronto, Ontario, 1978) Vol. I, p. 22. 

[33] W. Goldfarb, J. Frank, J.C. Hsung, C.H. Kim and T.E. 
King, in: Cytochrome Oxidase, Eds. T. King, Y. Orri, B. 
Chance and K. Okunuki (Elsevier-North Holland- 
Biomedical Press, Amsterdam, 1978) p. 161. 

[34] J. Frank, J.N. Turner, M. Marko, K. Asmus and D.F. 
Parsons, in: Proc. 38th Ann. Meeting EMSA, San Fran- 
cisco, 1980, Ed. G.W. Bailey (Claitor, Baton Rouge, LA) 
p. 46. 

[35] R. Gordon, R. Bender and G.T. Herman, J. Theoret. Biol. 
29 (1970) 47 I. 

[36] D. Fraser, ACM Trans. Math. Softw. 5 (1979) 500. 
[37] J. Frank, in: Computer processing of Electron Microscope 

Images, Ed. P.W. Hawkes (Springer, Berlin, 1980) p. 187. 


